Regional sustainable energy action planning - CoM

Marcos António Nogueira

marcos.nogueira@irradiare.com IrRADIARE, Lisbon - Brussels

Presentation structure

Targets 2014 / 2020

Regional innovation platform Energy Consumption Inventory

Program management and implementation Sustainable energy action planning

Funding and financing mechanisms

Regional development and competitiveness

Urban environment and quality of life

The presentation synopsis

On the presentation the following topics are illustrated:

Medium term energy planning: opportunities and requirements; Methodology for the Energy Consumption Inventory; Approach for medium-range energy demand assessment; Draft preliminary target measures for efficiency-based energy saving; Example of energy consumption reduction targets compliance; Suggested model for regional public/private implementation platform; Financial model options for sustainable energy planning implementation; Proposed regional energy management platform.

Energy consumption targets for 2014 - 2020

Part 1

Presentation structure

Targets 2014 / 2020

Regional innovation platform Energy Consumption Inventory

Program management and implementation Sustainable energy action planning

Funding and financing mechanisms

Part 1

Regional development and competitiveness Urban environment and quality of life

European Covenant of Mayors

Target: 20% CO₂ reduction by 2020

Adherents: +3000 European municipalities

Main tool: integrated planning and monitoring

Medium term goals

Combining energy sustainability, regional competitiveness and innovation attractiveness integrated targets planning

Proposed strategy

Multisectoral integration Budgetary soundness Investment attraction Local commitment Cost-effectiveness Symbiotic development

Proposed instruments

Inventory Action planning Predictive analysis Partnership Monitoring Innovation platform

Energy balance and consumption inventory Małopolska's example

Presentation structure

Targets 2014 / 2020

Regional innovation platform Energy Consumption Inventory

Program management and implementation Sustainable energy action planning

Funding and financing mechanisms

Part 2

Regional development and competitiveness Urban environment and quality of life

The energy balance and consumption inventory

Statistic data and knowledge-based estimation was used.

More detailed data and analysis is indispensable for project level analysis of benefits.

The same applies if municipal adhesions to the Covenant of Mayors may use the proposed methodology and framework is considered.

Energy Demand Inventory Consumption per sector 2010

Estimated energy demand profile for main activity sectors for Małopolska

Energy Demand Inventory Consumption per sector 2020

Estimated energy demand profile for main activity sectors for Małopolska

Energy Demand Inventory CO₂ emissions per fuel 2010

CO₂ emissions by final energy consumption by fuel (2010)

Estimated fuel originated CO₂ emissions for main activity sectors for Małopolska

Energy Demand Inventory CO₂ emissions per fuel 2020

CO₂ emissions by final energy consumption by fuel (2020)

Estimated fuel originated CO₂ emissions for main activity sectors for Małopolska

Sustainable energy action planning

Part 3

Presentation structure

Targets 2014 / 2020

Regional innovation platform Energy Consumption Inventory

Program management and implementation Sustainable energy action planning

Funding and financing mechanisms

Part 3

Regional development and competitiveness Urban environment and quality of life

The sustainable energy action plan

Business-as-usual scenario, considered for sustainable energy measures' impacts modelling, is presented.

The model-based methodology used to assess measures' cost-benefit and expected contribution to the overall energy sustainability targets is illustrated.

Statistic data and knowledge-based estimation was used.

Dynamic business as usual scenario

Final energy consumption

Final energy consumption

Final Energy Consumption [MWh/year]

Małopolska's example. Sustainable energy measures' impacts modelling

Dynamic business as usual scenario Overall energy intensity

Local energy intensity (2000 = 100))

Local energy intensity (2000 = 100)

Małopolska's example. Sustainable energy measures' impacts modelling

Dynamic business as usual scenario

Energy intensity per sector

Energy intensity by activity sector

- Energy intensity in the agriculture sector [MWh/M€/year]
 - Energy intensity in the tertiary sector [MWh/M€/year]

Małopolska´s example. Sustainable energy measures' impacts modelling

Dynamic business as usual scenario Total energy intensity in terciary

Total final energy consumption in the tertiary sector

Total energy consumption in the tertiary sector [MWh/year]

Małopolska´s example. Sustainable energy measures' impacts modelling

Dynamic business as usual scenario Energy consumption in transportation

Total final energy consumption in transportation

Total energy consumption in transportation [MWh/year]

Małopolska's example. Sustainable energy measures' impacts modelling

Dynamic business as usual scenario

Total power consumtion

Total electricity consumption

Total electricity consumption [MWh/year]

Małopolska's example. Sustainable energy measures' impacts modelling

Dynamic business as usual scenario

Energy consumption per work

Total energy consumption per worker in the industrial and tertiary sectors

Total power consumption in the industrial sector per worker [MWh/worker/year]

Total power consumption in the tertiary sector per worker [MWh/worker/year]

Małopolska´s example. Sustainable energy measures' impacts modelling

Example of energy saving targets and scenarios

DRAFTED SUSTAINABLE ENERGY PLANNING MEASURES IMPACT	REDUCTION		
 Energy consumption	18,4%		
CO ₂ emissions	31,1%		
Energy bill reduction (at 2010 prices)	24,2%		

DRAFTED SCENARIOS	YEAR	ENERGY CONSUMPTION [GWh]	CO ₂ EMISSIONS [ktCO ₂]	OVERALL ENERGY BILL [M PLN ₂₀₁₁]
Base scenario without measures	2010	42,844	19,804	16,636
Medium-term scenario without measures	2020	48,231	22,785	18,635
Medium-term scenario with measures	2020	39,379	15,699	14,122

Business as usual scenario compared to possible regional framework targets

Example of integrated measures' contribution to energy saving targets

ENERGY SUSTAINABILITY MEASURES	ENERGY SAVINGS (%)
Efficient lighting	0,97
Efficient street lighting	0,44
Tertiary buildings certification and labelling	0,44
Efficient vehicles, parts and fleets	5,90
Electric vehicles	1,78
Transport network improvements	2,11
Equipment modernisation and plants retrofitting	0,15
Active monitoring (direct effect)	0,11
LED and innovative lighting systems	0,58
Solar energy	0,17
Heat pumps	0,05
Biomass heating and hot water	0,05
Efficient boilers	0,05
Biodiesel	0,91
Urban rehabilitation and accessibilities improvement	0,04
Water management	0,10
→ Waste management	0,11

Modelled measures' contribution to a regionally projectable energy saving target

Example of integrated measures' contribution to energy saving targets

ENERGY SUSTAINABILITY MEASURES	ENERGY SAVINGS (%)	
Urban supply fleets	0,21	
Office equipment renovation and retrofitting	0,33	
Natural gas consumption expansion	0,01	
Domestic equipment renewal	0,75	
Public awareness, education, awards	0,19	
Energy management in housing common facilities	0,04	
Voluntary carbon reduction programmes	0,01	
Cycling and walking	1,92	
Industry and business mobility efficiency planning	0,53	
Large events mobility optimisation	0,13	
Public procurement (green procurement)	0,01	
Urban planning	0,16	
Improvement of support mechanism for green industries	0,01	
Professional performance improvement	0,02	
TOTAL	18,27	

Modelled measures' contribution to a regionally projectable energy saving target

Energy and environment integrated vision

Presentation structure

Targets 2014 / 2020

Regional innovation platform Energy Consumption Inventory

Program management and implementation Sustainable energy action planning

Funding and financing mechanisms

Part 4

Regional development and competitiveness Urban environment and quality of life

The energy sustainability and urban environment integrated vision

Symbiotic development of (energy) sustainability and innovation is a classic example of policies integration.

Among the "integratable" environment related, the following predominate:

Air quality;

Urban waste management;

Water supply and waste water treatment;

Public realm management;

Biomass and biowastes management and upgrading;

Urban environment and quality of life.

Coordinated monitoring of energy and environment data

Illustrated in the figure: on-line data on electric mobility impacts on air quality

Coordinated monitoring of energy and environment data

Illustrated in the figure: on-line data on electric mobility impacts on air quality

Energy and competitiveness integrated vision

Presentation structure

Targets 2014 / 2020

Regional innovation platform Energy Consumption Inventory

Program management and implementation Sustainable energy action planning

Funding and financing mechanisms

Part 5

Regional development and competitiveness

Urban environment and quality of life

Sustainability and competitiveness integrated vision

Considered innovation paradigm assesses six dynamic innovation factors and the corresponding key-indicators is proposed:

knowledge → Indicator: research and development;

qualification \rightarrow Indicator: skills training;

technology → Indicator: transfer;

mobility \rightarrow Indicator: cross-sectoral and trans-regional;

investment → Indicator: financial mechanisms, resources;

initiative \rightarrow Indicator: entrepreneurship, business expansion.

By favouring these factors energy sustainability measures are expected to operate as an innovation driver for competitiveness and growth.

Integrating energy and innovation strategies is a key for success and growth

Evidence on the need of conducting sustainability and innovation twofold policies to succeed energy targets is well apparent

Integrating energy and innovation strategies is a key for success and growth

High-tech services, often procured in implementing advanced energy saving measures, such as smartgrids, are vital to secure economic growth

Comparing Małopolska's with other European regions key-data - GFCF

Impacts in region's GDP may be expected on the long-term from implementing energy sustainability measures such that a 20% reduction magnitude may be attained

Regional innovation platform

Part 6

Presentation structure

Targets 2014 / 2020

Regional innovation platform Energy Consumption Inventory

Program management and implementation Sustainable energy action planning

Funding and financing mechanisms

Part 6

Regional development and competitiveness Urban environment and quality of life

The regional innovation platform

- A Web platform may support SEAP implementation, communication among involved stakeholders.
- In order to simplify documenting on the running projects, maintaining an on-line observatory as part of the supporting Web platform is highly recommended.
 - Monitoring and evaluating results is important for following-up on the main achievements.
- The same Web platform may be also of use to support the awareness rising.

Muemsy today's banner!

http://muemsy.irradiare.com

Q

18:09

🔺 🏴 🎪

DATA (D:) » PT

Funding and financing mechanisms

Presentation structure

Targets 2014 / 2020

Regional innovation platform Energy Consumption Inventory

Program management and implementation Sustainable energy action planning

Funding and financing mechanisms

Part 7

Regional development and competitiveness Urban environment and quality of life

Funding and financing mechanisms

On the basis of specific measures market profitability, public budget impacts and internalized social, economic and environmental benefits, the following funding sources may be combined:

Structural funding (ERDF)

Private investment from energy service companies (ESCO and EPC)

Direct private (entrepreneurial) investment in tertiary sector

Direct industrial investment

Private (and CAP funded) investment in agriculture

Private domestic investment in housing

Private investment in transport sector

Municipal investment in public services and urban management

Municipal investment in fleets renewal

Governmental programmes

Private or public funding

provision sources

FUNDING AND INVESTMENT SOURCES	INVESTMENT 2012-2020 [M PLN ₂₀₁₁]
Structural funding (ERDF)	1,393
Private investment from energy service companies (ESCO and EPC)	32
Direct private (entrepreneurial) investment in tertiary sector	737
Direct industrial investment	127
Private (and CAP funded) investment in agriculture	0.24
Private domestic investment in housing	2,405
Private investment in transport sector	7,891
Municipal investment in public services and urban management	3,784
Municipal investment in fleets renewal	71
Governmental programmes	4,596
Private investment in renewable power generation	7,095
TOTAL	21,036

Modelled measures' related long term investment focused on 2020 targets

European investment panorama in sustainable energy solutions

European investment panorama in sustainable energy solutions

Programme management and implementation

Presentation structure

Targets 2014 / 2020

Regional innovation platform Energy Consumption Inventory

Program management and implementation Sustainable energy action planning

Funding and financing mechanisms

Part 8

Regional development and competitiveness Urban environment and quality of life

Programme management and implementation

Energy sustainability planning and inventory efforts may be effectively integrated with other sectors:

urban environment, rural development, science, innovation, competitiveness, attractiveness, employment and, more generically, sustainability are adjacent sectors to energy.

Thus, integrated planning instruments – in which energy demand and supply foresight is assessed together with causes and impacts on other sectors – allow converging visions, resources and goodwill.

Public buildings

Water and sanitation

Street lighting

Fleets

Municipal fleets

Municipal Energy Management System

p 🖉

P

i	Public buildings	Туре	Car plate	Brand	Model	Color	Acti	Actions	
		Bus (upto 20 seats)	23-DE-52	Marca ou Domínio	Corolla	Cinza	Ø	[]	
-	Water supply and wastewater	Bus (more than 20 seats)	aa-11-22				Ø	0	
Urban solid waste	Urban solid waste	Waste management	aa-55-66				Ø	[]	
	collection and treatment	Car	27-JT-36	Audi	A6		Ø	[
۲	Public lighting	Car	qq-77-88				ø	[]	
	Municipal fleets	Construction machinery	80-GC-61				Ø	0	
		Light duty vehicle	39-DF-37	Citroen	Jumper		ø	Ď	
00	Other consumers	Motorcycle	52-FN-49	Yamaha	DT 50		Ø	1	
Report	Reports	Trailer (301 kg - 2500 kg)	ww-88-99				Ø	[]	
		New vehicle							
\sim	Parameterization								

Register

e

DATA (D:) » PT 17:56 . 10

Other energy consumptions

Dynamic reporting

Model and platform parameterization

M Parameterization ×						×
← → C 🗋 muemsy.irradiare	.com/index.php/en/p	arametrizacao			2	6
		6		IrRADIARE Science for Evolution		
· · · · /	NU	CW2			3	
	Municipal Ener	gy Management System	ATT ROAD			
-		You are here: Home				
	Public buildings	Parameterization Municipalities Road types				
	Water supply and wastewater treatment	IP levels Level of impact resistance				
ally in the second s	Urban solid waste collection and treatment	Lamp types Lamp models				
•	Public lighting	Diffusor types Sensor types				
	Municipal fleets	Fixation types Vehicle types Energy consumption period				
00	Other consumers	Quantity methods Vetors				
հե	Reports	Vector - units Produced energy destinations				
\sim	Parameterization	Water supply typologies Water supply equipment types				
Regist	ter	Energetic classes Home and office equipment types				
🖉 🦉	🛛 🖄 🚺	🗎 🖳 🔁		DAT	TA (D:) 🐣 PT 🔺 📭 🔥 18	:09

Project-based financial assessment

Financial assessment parameters

Simple payback (PP)

Net Present Value (NPV)

Benefit-cost ratio (C/B)

Internal Rate of Return (IRR)

Simple payback (PP)

It was calculated the year in which the NPV reaches zero, going from negative to positive.

$$PP = n_{NPV=0} - n_{t0}$$

Where:

PP - Simple payback [years]

 n_{t0} – Year of project start [years]

 $n_{VAL=0}$ – Year in which the NPV reaches zero years]

Net Present Value (NPV)

It was calculated by the sum of the difference between income obtained and investment until a year t, where the income obtained corresponds to energy invoice savings during this period. The NPV calculation begins in the phase zero year until the year 2030.

$$NPV = \sum_{t=1}^{n} R_t - I_t$$

Where:

NPV – Net Present Value [years]

 R_t – Income obtained in the year t [€]

 I_t – Investment in the year [€]

n – Lifetime of the project [years], n =2030

Benefit-cost ratio (C/B)

The cost-benefit ratio was calculated dividing the NPV of the 15th year after the assessment / certification year by the investment in the project execution phase.

$$B/C_t = \frac{NPV_t}{I_{execution}}$$

Where:

 B/C_t – Benefit-cost ratio in the year t, t =15 years NPV_t – Net Present Value in the year t [€], t =15 years $I_{execution}$ – Investment in the phase of execution [€]

Internal Rate of Return (IRR)

Is the profit rate which, in the year 2025, makes the capital available to the NPV of 2025. The IRR calculation was based on the following equation:

$$CA_{P2012_n} = \frac{\sum_{t=1}^{n} \left(I_{PC_t} + \left(I_{CP_t} + \frac{CA_{CP_{t-1}}}{1 - i_t} \right) \times pr \right)}{\sum_{t=1}^{n} (1 + i_t)}$$

Where:

 CA_{P2012_n} - Capital available at 2012 prices in the year t [€] I_{CP_t} - Investment at current prices in the year t [€] $CA_{CP_{t-1}}$ - Capital available at current prices in the year t-1 [€] pr - Profit rate [%],pr = IRR i_t - Inflation rate in the year t [%]

Internal Rate of Return (IRR)

Equations base for IRR calculation:

$$CA_{P2012_n} = \frac{CA_{CP_n}}{\sum_{t=1}^n (1+i_t)} = \frac{\sum_{t=1}^n (I_{CP_t} + CF_{CP_t})}{\sum_{t=1}^n (1+i_t)}$$
$$= \frac{\sum_{t=1}^n \left(I_{CP_t} + \left(I_{CP_t} + \frac{CD_{CP_{t-1}}}{1-i_t} \right) \times pr \right)}{\sum_{t=1}^n (1+i_t)}$$

Where:

 CA_{P2012_n} – Capital available at 2012 prices in the year t [€] CA_{CP_t} – Capital available at current prices in the year t [€] i_t – Inflation rate in the year t [%] I_{CP_t} – Investment at current prices in the year t [€] CF_{CP} – Cash-flow at current prices in the year t [€] $CA_{CP_{t-1}}$ – Capital available at current prices in the year t [€] pr – Profit rate [%], pr = IRR

Conclusions

The proposed methodology allows moving beyond of smart energy management pilots towards full regional scale implementation.

The integrated planning and management allows combining investment resources throughout areas such as urban environment or economic competitiveness.

A cost effective approach is offer for sustainable energy policies and investments assessment and monitoring, namely for 2014-2020 funding period.

paldies

Marcos António Nogueira marcos.nogueira@irradiare.com IrRADIARE, Lisbon - Brussels

