Resíduos Urbanos para injecção de biometano na rede e transportes em áreas urbanas

Projecto Nº: IEE/10/251

Boas práticas para produção, valorização e utilização de biogás a partir de resíduos

Setembro 2011

Autor: Hahn Henning, Fraunhofer IWES, Germany

Revisão: Dominik Rutz, WIP Renewable Energies, Germany

Marcos António Nogueira, IrRADIARE, Science for evolution, Portugal

Contacto: Fraunhofer-Institut for Wind Energy e Energy System Technology IWES

Henning Hahn

Email: Henning.Hahn@iwes.fraunhofer.de

Königstor 59 34 119, Kassel

O projecto UrbanBiogas (Urban waste for biomethane grid injection e transport in urban areas) é apoiado pela Comissão Europeia através do programa IEE - Energia Inteligente para a Europa). A inteira responsabilidade desta publicação recai sobre os seus autores. A publicação não reflecte necessáriamente a opinião da União Europeia. Nem a EACI (Agência Europeia para a Competitividade e Inovação) nem a Comissão Europeia são responsáveis por qualquer utilização do presente documento ou da informação ou dados nele contidos. O projecto UrbanBiogas estende-se de Maio 2011 a Abril 2014 (Contracto Número: IEE/10/251).

UrbanBiogas website: http://http://www.urbanbiogas.eu

Lista de fichas de boas práticas

Glossário	
Västerås, Suécia	
Henriksdal, Suécia	
Linköping, Suécia	
Inwil, Suíça	18
Bern, Suíça	22
Rostock, Alemanha	26
Altenstadt/Schongau, Alemanha	30
Werlte, Alemanha	
Bruck an der Leitha, Áustria	37
Madrid, Espanha	42
Lille, França	4

Glossário

Biogás

Combustível derivado da decomposição biológica de resíduos orgânicos sob condições anaeróbicas. Normalmente, o biogás originado por resíduos orgânicos contém uma fracção de 50 a 75% de metano em Volume.

Biometano

Matéria prima produzida a partir da digestão anaeróbica de resíduos orgânicos da qual resulta biogás composto por uma fracção de 50 a 75% em Volume (Vol) de Metano, 25 a 55 % (Vol) de Dióxido de Carbono, 0-10 % de vapor de água e pequenas fracções de azoto, hidrogénio oxigénio amoníaco e vapor de água e sulfureto de hidrogénio. Após valorização e purificação, o biogás recebe a designação de Biometano. O Biometano tem um conteúdo de metano superior a 95 Vol. %.

Volume máximo de potência produzida (térmica ou eléctrica) convertida num dado sistema, no presente caso, exemplificativamente, a partir de Biogás. Esta capacidade é tipicamente expressa em Watts, KiloWatts ou MegaWatts.

Capacidade

Em fluente sólido resultante de um processo de Digestão Anaeróbica. O composto contém todos os nutrientes do substrato tratado, resultando um excelente fertilizante orgânico.

Composto

A energia consumida inclui, nas fichas de caso de referência apresentadas neste documento, electricidade e calor. O consumo inclui a electricidade ou calor necessário para produzir uma unidade de Biogás ou Biometano.

Consumo energético

O tempo de retenção hidráulico HRT médio tem uma influência significitiva na eficiência económica do processo e na intensidade da produção. O HRT médio deve ser suficientemente elevado para permitir a degradação da biomassa e a reprodução de biomassa activa. Dado o tempo de 10 – 12 dias para a duplicação dos micro organismos responsáveis pela formação de metano o HTR deve exceder 12 dias.

Tempo de retenção hidráulico (HRT)

A carga orgânica de um digestor é a fracção volúmica de matéria orgânica por unidade de volume de carga total alimentada no digestor. A Carga orgânica é um critério para avaliar o desempenho dos digestores.

A disponibilidade de uma instalação de valorização corresponde ao tempo durante o qual, ao longo de um ano, em percentagem, a instalação por executar a valorização de biogás. A disponibilidade da instalação não está

relacionada com o grau de utilização.

Carga orgânica

Disponibilidade da instalação

Västerås, Suécia

LOCALIZAÇÃO

INSTALAÇÃO DE PRODUÇÃO DE BIOGAS Västerås

SE-721 87 Västerås

Sweden

OPERADOR

Svensk Växkraft AB

Telefone: +46/21 35 00

http://www.vafabmiljo.se/svensk_vaxtkraft_ab_s224.html

INFORMAÇÃO GERAL SOBRE A INSTALAÇÃO

Desde 1995 a instalação de *Västerås* produz Biometano como um combustível rodoviário para o sector dos transportes públicos. As instalações de produção e valorização de biogas são operadas pela *Svensk Växkraft AB*. A empresa estabeleceu-se em 2003 por iniciativa do município de *Västerås (Vafabmilj*ö), da Federação Nacional de Agricultores Suecos e da *Mälarenergi*, uma empresar local de promoção energética, e ainda de algumas explorações agrícolas locais.

A instalação de valorização purifica biogás originário de duas instalações produtoras, de uma instalação de digestão de resíduos e de uma estação de tratamento de águas residuais. Os resíduos domésticos separados na origem — recolhidos na região — resíduos líquidos oleosos e resíduos verdes são as principais fontes de matéria-prima para a produção de biogás na unidade de digestão de resíduos.

INSTALAÇÃO DE PRODUÇÃO DE BIOGAS

DETALHES TÉCNICOS			
Início da operação	2005	Produção de biogás	280 Nm³/h
Duração da fase de instalação	2003 até 2005	Tempo de retenção hidraulico	24 d

Número de digestores	1	Carga orgânica	sem dados
Volume dos digestores	4 000 m³	Qualidade do biogás	60 – 65 Vol. % CH ₄
Capacidade de armazenamento de gás	500 m³	Consumo energético	0.35 kWh/Nm³ CH₄ eq

ABASTECIMENTO			1
Volume total de resíduos	20 550 t/ano	100 %	
Resíduos domésticos	15 400 t/ano	75 %	
Resíduos líquidos oleosos	2 150 t/ano	10 %	(Imagam unfahmilia)
Resíduos verdes	2 990 t/ano	15 %	(Imagem: vafabmiljo)

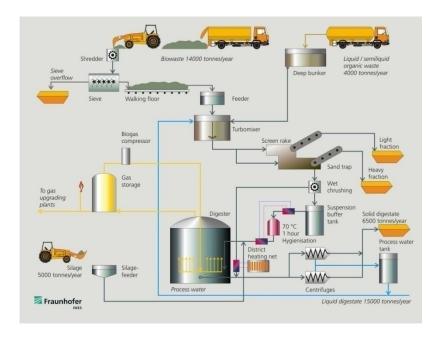
UTILIZAÇÃO DOS RESÍDUOS DA DIGESTÃO

Utilização como fertilizante orgânico pelas explorações agrícolas participantes.

DETALHES ECONÓMICOS

Investimento inicial Aprox. 6 M€ (sem considerar tecnologias de

valorização)


Proveitos marginais relativamente à deposição de Sem dados

resíduos orgânicos

Custo da produção de biogás Sem dados

INSTALAÇÃO DE VALORIZAÇÃO DE BIOGÁS

DETALHES TÉCNICOS			
Início da operação	2005	Disponibilidade da instalação	>95 %
Sistema de valorização	Purificador de água	Utilização do biometano	Combustível rodoviário
Fabricante da instalação	Malmberg	Tratamento do efluente atmosférico	Filtro Bio
Capacidade de valorização	700 Nm³/h	Perdas de metano	< 2 % de gás purificado
Fracção de metano	>95 %		

DETALHES ECONÓMICOS			
Investimento inicial	sem dados	Custo de produção de biometano	sem dados

VANTAGENS E CONCLUSÕES

VANTAGENS PARA A REGIÃO

A instalação de produção de biogás em Västerås é uma parte do sistema de reciclagem da região para resíduos, nutrientes e energia entre áreas urbanas e rurais. Com a produção de biometano, a instalação de produção de biogás contribui para a poupança de energia, de combustível fóssil e reduz a quantidade de resíduos orgânicos

incinerados e, correspondentemente, evita emissões de CO₂. A utilização dos resíduos produzidos, tais como fertilizantes, ajuda a fechar os ciclos de nutrientes e substituir fertilizantes minerais.

CONCLUSÕES

A experiência mostrou que com a participação de todos os interessados na cadeia de valor da produção de biogás e biometano deveriam estar envolvidos no projecto numa fase inicial. Contratos com vínculo legal devem ser realizados para o fornecimento de substratos e resíduos assim como para a utilização de resíduos de digestão.

(Imagem: http://www.vafabmiljo.se)

LOCALIZAÇÃO

Instalação de produção de Biogás Henriksdal

SE-106 36 Estocolmo

Suécia

OPERADOR

Stockholm Vatten AB (SVAB)

Phone: +46/8 522 120 00

stockholm.vatten@stockholmvatten.se

http://www.stockholmvatten.se

INFORMAÇÃO GERAL SOBRE A INSTALAÇÃO

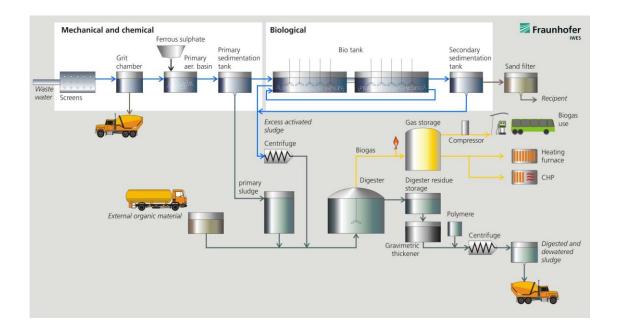
O Biogás é produzido na instalação de produção de Henriksdal desde 1969, sendo o combustível rodoviário produzido desde 2003. A instalação de tratamentos de águas residuais processa volumes equivalentes a cerca de 800.000 pessoas. A *Stockholm Vatten AB*, uma empresa de abastecimento de água, gere a estação de tratamentos de águas resíduais e a instalação de produção de biogás. As instalações de valorização são geridas pela empresa *Sceinavian biogas*. As lamas residuais, e resíduos alimentares recolhidos de restaurantes locais e mercados, bem como lamas com elevados teores resíduos oleosos, são digeridas na instalação de produção de biogás.

INSTALAÇÃO DE PRODUÇÃO DE BIOGAS

DETALHES TÉCNICOS			
Início da operação	1969	Produção de biogás	1 400 Nm³/h
Duração da fase de instalação	sem dados	Tempo de retenção hidraulico	19 d
Número de digestores	7	Carga orgânica	1.6 kg oDM/m³⋅d

Volume dos digestores	38 400 m³	Qualidade do biogás	60 – 65 Vol. % CH ₄
Capacidade de armazenamento de gás	sem dados	Consumo energético	2.4 kWh/Nm³ CH₄ eq

ABASTECIMENTO			_
Volume total de resíduos	790 000 t/ano	100 %	
Lamas resíduais	760 000 t/ano	96 %	
Food waste	30 000 t/ano	4 %	(Imagem: Fraunhofer IWES)


UTILIZAÇÃO DOS RESÍDUOS DA DIGESTÃO

A utilização de resíduos da digestão como fertilizantes para a agricultura está ser planeado para o futuro. Actualmente os resíduos sólidos são usados como melhoria após a separação de sólidos e líquidos. Os resíduos líquidos são transportados de volta para o processo de tratamento de águas residuais.

DETALHES ECONÓMICOS	
Investimento inicial	sem dados
Proveitos marginais relativamente à deposição de resíduos orgânicos	50 - 80 €/t
Custo da produção de biogás	2 – 4 Cent€/kWh

INSTALAÇÃO DE VALORIZAÇÃO DE BIOGÁS

DETALHES TÉCNICOS			
Início da operação	2003 e 2006	Disponibilidade da instalação	>95 %
Sistema de valorização	Purificador de água	Utilização do biometano	Combustível rodoviário
Fabricante da instalação	Malmberg	Tratamento do efluente atmosférico	sem dados
Capacidade de valorização (em caudal volúmico de Biogás)	600 e 800 Nm³/h	Perdas de metano	sem dados
Fracção de metano	96 - 98 %		

DETALHES ECONÓMICOS					
Investimento inicial	sem dados	Custos de biometano	produção	de	sem dados

VANTAGENS E CONCLUSÕES

VANTAGENS PARA A REGIÃO

A cidade de Estocolmo tem um programa para introduzir veículos a gás e objectivos para ser livre de combustível fóssil até2050. O biometano tem sido usado como combustível rodoviário em Estocolmo desde 1996. A venda de

Biometano como combustível rodoviário aumentou continuamente desde então.

CONCLUSÕES

O departamento de gestão de resíduos em Estocolmo trabalha continuamente para aumentar a partilha de tratamento biológico de resíduos alimentares. O processo de digestão anaeróbica na instalação de produção de biogás está constantemente a ser optimizado. Um aumento da produção de biogás foi alcançado através do espessamento das lamas residuais antes de serem carregadas para dentro do digestor.

(Imagens: Fraunhofer IWES)

BIAGAS

3

Linköping, Suécia

LOCALIZAÇÃO OPERADOR

Linköping Svensk Biogas AB 581 15 Linköping 581 15 Linköping

Suécia http://www.svenskbiogas.se

INFORMAÇÃO GERAL SOBRE A INSTALAÇÃO

A instalação de produção de biogás de Linköping, no Sudeste da Suécia, encontra-se em funcionamento desde 1996. Os parceiros iniciais eram Tekniska Verken, Swedish Meats e LRF (Federação de agricultores suecos). Desde 2004, a instalação de produção de biogás de Linköping opera como uma instalação de tratamento de águas residuais parte de Svensk Biogas, uma subsidiária do grupo Tekniska Verken. A empresa Tekniska Verken gere uma instalação de tratamento de águas residuais e duas instalações de produção de biogás.

As três instalações de valorização estão localizadas perto da instalação de digestão e da instalação de produção de biogás. Adicionalmente ao biogás produzido na instalação, o biogás produzido através da estação de tratamento de águas residuais é valorizado igualmente na mesma instalação.

INSTALAÇÃO DE PRODUÇÃO DE BIOGAS

DETALHES TÉCNICOS			
Início da operação	1996	Produção de biogás	400 m³/h
Duração da fase de instalação	sem dados	Tempo de retenção hidraulico	50 d
Número de digestores	2	Carga orgânica	2.8 kg oDM/m³ d

Volume dos digestores	7 400 m³	Qualidade do biogás	64 - 65 Vol. % CH ₄
Capacidade de armazenamento de gás	sem dados	Consumo energético	2.2 kWh/Nm³ CH ₄ eq

ABASTECIMENTO		
Volume total de resíduos	53 800 t/ano	100 %
Resíduos de matadouro	27 500 t/ano	51 %
Resíduos farmacêuticos	8 600 t/ano	16 %
Resíduos de etanol	7 500 t/ano	14 %
Resíduos de lacticínios	9 100 t/ano	17 %
Outros	1 100 t/ano	2 %

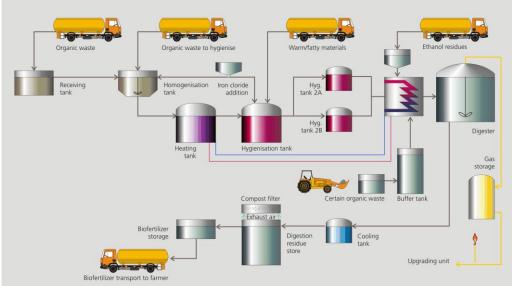
(Imagem: Fraunhofer IWES)

UTILIZAÇÃO DOS RESÍDUOS DA DIGESTÃO

Os resíduos de digestor são usados como fertilizantes para a agricultura pelo agricultores locais.

DETALHES ECONÓMICOS

Investimento inicial sem dados


Proveitos marginais relativamente à deposição de sem dados

resíduos orgânicos

Custo da produção de biogás 2 - 3 Cent€/kWh

(Source: Fraunhofer IWES)

INSTALAÇÃO DE VALORIZAÇÃO DE BIOGÁS

DETALHES TÉCNICOS			
Início da operação	1992, 1997 e 2002	Disponibilidade da instalação	sem dados
Sistema de valorização	Purificador de água; PSA	Utilização do biometano	Combustível rodoviário
Fabricante da instalação	Carbotech; Flotech; YTI Vatten och miljöteknik AB	Tratamento do efluente atmosférico	Filtragem por composto
Capacidade de valorização	2 120 Nm³/h	Perdas de metano	sem dados
Fracção de metano	97 %		

DETALHES ECONÓMICOS					
Investimento inicial	sem dados	Custos de biometano	produção	de	sem dados

VANTAGENS E CONCLUSÕES

VANTAGENS PARA A REGIÃO

Desde 2002 todos circulam com biometano no centro da cidade de Linköping. Outro benefício ambiental é o comboio que se encontra em funcionamento com biometano em vez de gasóleo.

CONCLUSÕES

Quando a instalação de produção de biogás começou a sua produção nos anos 90 foi uma das primeiras instalações de produção de biogás na Suécia. Numa fase inicial foram enfrentadas algumas dificuldades para encontrar o abastecimento adequado. Recentemente, um número crescente de autoridades locais na Suécia Começaram a desenvolver instalações de produção de biogás o que aumentou a competição entre as empresas de resíduos orgânicos.

A experiência nesta instalação de produção de biogás em Linköping mostrou que é recomendado investigar o mercado local de resíduos materiais orgânicos para determinar o substrato mais adequado para garantir um fornecimento de confiança e rentável.

(Imagens: Fraunhofer IWES)

LOCALIZAÇÃO OPERADOR

Im Feld SwissFarmerPower Inwil AG

6034 Inwil Im Feld

Suíça 6034 Inwil

http://www.sfpinwil.ch; philip.gassner@sfpinwil.ch

Mobil: +41(0)79 403 92 94

INFORMAÇÃO GERAL SOBRE A INSTALAÇÃO

A instalação de produção de biogás em *Inwil* está localizada na região de Luzern, que é caracterizada por uma elevada densidade de actividade pecuária. A instalação tem sido gerida pela SwissFarmerPower AG desde 2008 que pretence a *ewl* (Erdgas Zentralschweiz AG) e 72 agricultores bem como *fenaco* (Grupo económico de agricultura suíça)

INSTALAÇÃO DE PRODUÇÃO DE BIOGAS

DETALHES TÉCNICOS			
Início da operação	2008	Produção de biogás	500 m³/h
Duração da fase de instalação	1 ano	Tempo de retenção hidraulico	sem dados
Número de digestores	3	Carga orgânica	sem dados
Volume dos digestores	4 550 m³	Qualidade do biogás	55 - 58 Vol. %

Capacidade de	sem dados	Consumo energético	sem dados
armazenamento de gás			

ABASTECIMENTO		
Volume total de resíduos	60 000 t/ano	100 %
Resíduos pecuários	30 000 t/ano	50 %
Resíduos alimentares e verdes	30 000 t/ano	50 %

(Imagem: Fraunhofer IWES)

UTILIZAÇÃO DOS RESÍDUOS DA DIGESTÃO

A separação de resíduos de digestão, sólidos e líquidos. Os resíduos líquidos e sólidos são usados como fertilizantes orgânicos na agricultura e na instalação de produção de biogás.

DETALHES ECONÓMICOS

Investimento inicial Cerca de 19 M€ (instalações de biogás e de

valorização)

Proveitos marginais relativamente à deposição de sem dados

resíduos orgânicos

Custo da produção de biogás sem dados

INSTALAÇÃO DE VALORIZAÇÃO DE BIOGÁS

DETALHES TÉCNICOS			
Início da operação	2008	Disponibilidade da instalação	sem dados
Sistema de valorização	PSA	Utilização do biometano	Injecção na rede de gás natural
Fabricante da instalação	sem dados	Tratamento do efluente atmosférico	sem dados
Capacidade de valorização	225 Nm³/h	Perdas de metano	sem dados
Fracção de metano	98 %		

DETALHES ECONÓMICOS		
Investimento inicial	Cerca de 19 M€	Custos de produção de <i>sem dados</i> biometano

VANTAGENS E CONCLUSÕES

VANTAGENS PARA A REGIÃO

Antes da instalação de produção de biogas em Inwil ter sido construída, a quantidade de estrumes produzidos na actividade pecuária excedia a capacidade local de absorção por espalhamento. Os agricultores tinham custos adicionais decorrentes da necessidade de transportar resíduos para longas distâncias para largarem as lamas em excesso. Esta situação alterou-se com a produção de biogás baseada no estrume e subsequentemente o tratamento de resíduos líquidos e sólidos. O adubo produzido através de resíduos sólidos pode ser utilizado em jardins privados como activador do solo. Este adubo está disponível gratuitamente para consumidores privados na instalação de produção de biogás

CONCLUSÕES

sem informação disponível

(Imagens: http://www.sfpinwil.ch)

LOCALIZAÇÃO

Neubrückstrasse 190

Postfach 58

CH 3037 Herrenschween

Suíça

OPERADOR

ara region bern ag

phone: +41 31 300 52 52

http://www.arabern.ch

INFORMAÇÃO GERAL SOBRE A INSTALAÇÃO

A empresa *arabern* trata águas residuais de cerca de 250.000 habitantes. A instalação de produção de biogás situada na instalação de tratamento de águas residuais entrou em funcionamento em 1967. Desde 2004 com o objectivo de aumentar a produção de biogás, a instalação tratar resíduos materiais orgânicos adicionalmente às lamas residuais.

INSTALAÇÃO DE PRODUÇÃO DE BIOGAS

DETALHES TÉCNICOS			
Início da operação	2004	Produção de biogás	835 Nm³/h
Duração da fase de instalação	1 ano	Tempo de retenção hidraulico	25 d
Número de digestores	3	Carga orgânica	1.2 kg oDM/m³d
Volume dos digestores	18 000 m³	Qualidade do biogás	66 Vol. % CH ₄
Capacidade de	4 500 m³	Consumo energético	2 kWh/Nm³ CH₄ eq

Setembro 2011

armazenamento de gás

ABASTECIMENTO		
Volume total de resíduos	247 000 t/a	100.0 %
Lamas residuais	221 000 t/a	89.3 %
Resíduos líquidos oleosos	2 700 t/a	1.1 %
Outras matérias gordas	2 200 t/a	0.9 %
Resíduos de restauração	8 400 t/a	3.4 %
Etanol	580 t/a	0.2 %
Outros	12 600 t/a	5.1 %

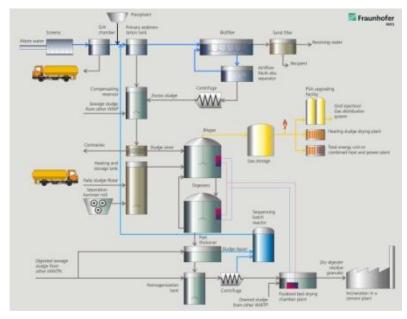
(Imagem: arabern)

UTILIZAÇÃO DOS RESÍDUOS DA DIGESTÃO

Incineração em fábricas de cimento.

DETALHES ECONÓMICOS

Investimento inicial 1.5 M€


Proveitos marginais relativamente à deposição de sem dados

resíduos orgânicos

Custo da produção de biogás <3 Cent€/kWh

INSTALAÇÃO DE VALORIZAÇÃO DE BIOGÁS

DETALHES TÉCNICOS			
Início da operação	2008	Disponibilidade da instalação	>95 %
Sistema de valorização	PSA	Utilização do biometano	Combustível rodoviário
Fabricante da instalação	Carbotech	Tratamento do efluente atmosférico	sem tratamento
Capacidade de valorização	300 Nm³/h	Perdas de metano	<3 %
Fracção de metano	>96 %		

DETALHES ECONÓMICOS		
Investimento inicial	1.5 M€	Custos de produção de <3 Cent€/kWh biometano

VANTAGENS E CONCLUSÕES

VANTAGENS PARA A REGIÃO

De forma a aumentar a produção de biogás, substratos de origem indústrial e da resturação são adicionados aos digestores da estação de tratamento de águas resíduais. Desde que esses substratos foram e introduzidos e processados na instalação de produção de biogás, a produção aumentou significativamente.

A empresa local de energia ewb (Energie Wasser Bern) lançou com sucesso uma forte campanha de marketing

para o biometano como combustível rodoviário. Actualmente, muitas empresas e instituições substituíram parcialmente as suas frotas por veículos que funcionam à base deste gás.

CONCLUSÕES

Em Berna foram feitos esforços no desenvolvimento do enchimento das estações de biometano. O desafio maior foi uma estação de enchimento interior no entreposto de autocarros de *Bernmobil* (transporte público da região de Berna). Uma estação de enchimento lento para autocarros foi instalada dentro do autocarro para encher os depósitos durante a noite. Mas as emissões de biometano dentro do autocarro causaram problemas. Os resultados financeiros da estação de enchimento interior mostra que esta experiência não é recomendada, nem a sua repetição em qualquer lugar.

(Imagens: Fraunhofer IWES, arabern)

LOCALIZAÇÃO

18147 Rostock

Alemanha

OPERADOR DA INSTALAÇÃO DE PRODUÇÃO DE BIOGAS

EVG Entsorgungs-und

Verwertungsgesellschaft mbH Rostock

Ost-West Straße 22

18147 Rostock

Tel.: +49 (0)381 67330-10

OPERADOR DA INSTALAÇÃO DE VALORIZAÇÃO

E.ON Hanse Wärme

GmbH

(Imagem: EVG Entsorgungs-und Verwertungsgesellschaft mbH Rostock)

Rigaer Straße 5

18311 Ribnitz-Damgarten

INFORMAÇÃO GERAL SOBRE A INSTALAÇÃO

Os resíduos orgânicos municipais de Hansestadt Rostock, Bad Doberan, Nordvorpommern e Güstrow são tratados no centro de valorização orgânica (ORC) em Rostock. Antes da instalação de produção de biogás ser construída, os resíduos eram usados para produzir composto e para substituir combustíveis fósseis numa unidade de incineração. Desde 2010, a fracção de resíduos orgânica digestível é usada para produzir biogás. *E-ON Hanse Wärme GmbH* (geração de energia eléctrica) utiliza o biogás em duas centrais para a cogeração. Desde Fevereiro de 2011, o excedente da produção de biogás é valorizado para biometano e injectado na rede pública de gás.

INSTALAÇÃO DE PRODUÇÃO DE BIOGAS

DETALHES TÉCNICOS			
Início da operação	2010	Produção de biogás	1 000 m³/h
Duração da fase de instalação	sem dados	Tempo de retenção hidraulico	12-16 d
Número de digestores	3	Carga orgânica	sem dados

Volume dos digestores	3 600 m³	Qualidade do biogás	>55 Vol. % CH ₄
Capacidade de armazenamento de gás	sem dados	Consumo energético	sem dados

ABASTECIMENTO		
Volume total de resíduos	40 000 t/ano	100 %
Food waste	4 000 t/ano	10 %
Municipal waste	36 000 t/ano	90 %

UTILIZAÇÃO DOS RESÍDUOS DA DIGESTÃO

Sem informação disponível

DETALHES ECONÓMICOS	
Investimento inicial	sem dados
Proveitos marginais relativamente à deposição de resíduos orgânicos	sem dados
Custo da produção de biogás	sem dados

(Imagem: http://www.evg-mba-rostock.de/teilstromvergaerungsanlage)

INSTALAÇÃO DE VALORIZAÇÃO DE BIOGÁS

DETALHES TÉCNICOS			
Início da operação	2011	Disponibilidade da instalação	>96 %
Sistema de valorização	water scrubber	Utilização do biometano	Injecção na rede de gás natural
Fabricante da instalação	Cirmac	Tratamento do efluente atmosférico	sem dados
Capacidade de valorização	350 m³/h	Perdas de metano	sem dados
Fracção de metano	>98%		

DETALHES ECONÓMICOS					
Investimento inicial	sem dados	Custos de biometano	produção	de	sem dados

VANTAGENS E CONCLUSÕES

VANTAGENS PARA A REGIÃO

A instalação de produção de biogás em Rostock evita 15 200 t/ano CO2 emissões na região através da co-

produção de biometano, electricidade e calor.

CONCLUSÕES

Sem informação disponível

(Imagens: E.ON Wärme Hanse GmbH)

LOCALIZAÇÃO

INSTALAÇÃO DE PRODUÇÃO DE BIOGAS Altenstadt

Wolfgarten 1

86972 Altenstadt, Alemanha

OPERADOR

Öko-Power GmbH & Co. KG

Wolfgarten 1

Phone: +49 8861-234411

Email: oekopower-gmbh@t-online.de

INFORMAÇÃO GERAL SOBRE A INSTALAÇÃO

O biometano tem sido produzido na instalação de produção de biogás em Altenstadt desde 2009. A instalação de produção de biogás iniciou a sua produção de biogás em 2001. Durante os primeiros nove anos o biogás produzido foi usado para gerar electricidade em estações de cogeração. Depois de 80 000 horas de operação a empresa decidiu implementar uma fábrica de valorização de biogás para biometano em vez de investir em novas cogerações. Presentemente, a Öko-Power GmbH & Co. KG opera a actualização com a Erdgas GmbH Schwaben.

INSTALAÇÃO DE PRODUÇÃO DE BIOGAS

DETALHES TÉCNICOS			
Início da operação	2001	Produção de biogás	1 200 m³/h
Duração da fase de instalação	9 month	Tempo de retenção hidraulico	60 d
Número de digestores	6 primários 2 secundários	Carga orgânica	sem dados
Volume dos digestores	7 800 m³	Qualidade do biogás	65 - 70 Vol. % CH₄

Capacidade de sem dados Consumo energético sem dados armazenamento de gás

ABASTECIMENTO

Resíduos sólidos municipais (resíduos alimentares e de restauração, resíduos gordurosos, resíduos de matadouro)

40 000 t/a 100 %

[Source: Biomasse Kompetenz Zentrrum]

UTILIZAÇÃO DOS RESÍDUOS DA DIGESTÃO

Os resíduos dos digestores resultantes da produção de biogás são separados em fracção sólida e líquida. Os resíduos sólidos são incinerados na instalação de produção de calor juntamente com lamas residuais desidratadas. Os resíduos líquidos remanescentes são usados como fertilizantes agrícolas.

DETALHES ECONÓMICOS

Investimento inicial 4 M€

Proveitos marginais relativamente à deposição de aprox. 10 €/t

resíduos orgânicos

Custo da produção de biogás 2-4 Cent€/kWh

(Imagem: Öko-Power GmbH & Co. KG)

INSTALAÇÃO DE VALORIZAÇÃO DE BIOGÁS

DETALHES TÉCNICOS				
Início da operação	2009	Disponibilidade instalação	da	98 %
Sistema de valorização	Water scrubber	Utilização biometano	do	Injecção na rede de gás natural; Filling station at the plant site
Fabricante da instalação	Ros Roca	Tratamento efluente atmosféri	do ico	Thermal treatment
Capacidade de valorização	690 m³/h	Perdas de metano		sem dados
Fracção de metano	98 %			

DETALHES ECONÓMICOS					
Investimento inicial	sem dados	Custos de biometano	produção	de	cerca 2.5 - 3 Cent€/kWh

VANTAGENS E CONCLUSÕES

VANTAGENS PARA A REGIÃO

A instalação de produção de biogás em *Altenstadt* produz biometano a partir de resíduos orgânicos municipais evitando a competição de culturas energéticas com a indústria de processamento de alimentos. A estação de enchimento de biometano está incluída nesta instalação. Camões de recolha de resíduos sólidos urbanos são operados com biometano a 100%.

CONCLUSÕES

Quando a instalação de produção de biogás iniciou a sua operação em 2001, foi a primeira instalação de digestão de resíduos orgânicos na região. Desde então, outras instalações de produção de biogás têm vindo a tratar resíduos orgânicos e a concorrer nesse mercado. Assim, as receitas para eliminar resíduos orgânicos tornaram-se menores do que inicialmente previsto o que afecta a economia global da instalação.

LOCALIZAÇÃO

Biogasanlage Werlte Loruper Straße 80 49757 Werlte

Alemanha

OPERADOR

EWE Biogas GmbH & Co. KG

Isums 45a

26409 Wittmund Telefon: 04462 9199-0

Telefax: 04462 9199-19 E-Mail: biogasanlage-wittmund@ewe.de

biogasanlage-werlte@ewe.de

INFORMAÇÃO GERAL SOBRE A INSTALAÇÃO

A instalação de produção de biogás em Werlte foi uma das primeiras instalações de valorização na Alemanha. A *EWE Biogás GmbH & Co. KG*, que faz parte da *AG EWE* (empresa alemã de produção de energia) vem operando a instalação de produção de biogás desde 2006. A instalação de valorização foi construída em 2007 com o objectivo de injectar biometano para a rede de gás natural.

INSTALAÇÃO DE PRODUÇÃO DE BIOGAS

DETALHES TÉCNICOS			
Início da operação	2002	Produção de biogás	1 000 m³/h
Duração da fase de instalação	sem dados	Tempo de retenção hidraulico	47 d
Número de digestores	2	Carga orgânica	2-5 kg oDM/m³
Volume dos digestores	6 400 m³	Qualidade do biogás	62-69 Vol. % CH ₄

Setembro 2011

Capacidade de	sem dados	Consumo energético	sem dados
armazenamento de gás			

ABASTECIMENTO		
Volume total de resíduos	110 000 t/ano	100 %
Resíduos de matadouros	40 000 t/ano	36 %
Efluentes agropecuários	70 000 t/ano	64 %

UTILIZAÇÃO DOS RESÍDUOS DA DIGESTÃO

O resíduo de digestor é utilizado como adubo orgânico em campos agrícolas.

DETALHES ECONÓMICOS	
Investimento inicial	7 M€
Proveitos marginais relativamente à deposição de resíduos orgânicos	-3 - 8 €/t FM
Custo da produção de biogás	sem dados

INSTALAÇÃO DE VALORIZAÇÃO DE BIOGÁS

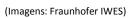
DETALHES TÉCNICOS				
Início da operação	2007	Disponibilidade instalação	da	>96 %
Sistema de valorização	PSA	Utilização biometano	do	Injecção na rede de gás natural
Fabricante da instalação	Carbo Tech Eng.	Tratamento efluente atmosféric	do o	sem dados
Capacidade de valorização	500 m³/h	Perdas de metano		sem dados
Fracção de metano	94 % (L-Gas)			

DETALHES ECONÓMICOS

Investimento inicial 1 M€ Custos de produção de sem dados biometano

VANTAGENS E CONCLUSÕES

VANTAGENS PARA A REGIÃO


A instalação de produção de biogás ajuda a fechar os ciclos de nutrientes pelo tratamento de resíduos orgânicos de explorações agrícolas, pecuárias e matadouros.

Os resíduos de digestor com um elevado valor de nutrientes são espalhados em campos agrícolas perto da instalação de produção de biogás.

CONCLUSÕES

Tipicamente, o tratamento de resíduos orgânicos na instalação de produção de biogás conduz a descontinuidades na produção descontínua à sua heterogeneidade. Assim, a eficiência da instalação de produção de biogás pode ser potencialmente aumentada através de uma maior homogeneidade no abastecimento de resíduos organicos. Os resíduos orgânicos são uma fonte importante de energia renovável e contribui para fechar os ciclos de nutrientes.

9 Bruck an der Leitha, Áustria

LOCALIZAÇÃO OPERADOR

Szallasweg 1 BIOGAS BRUCK/LEITHA GmbH

2460 Szallasweg 1

Bruck/Leitha 2460 Bruck/Leitha

Áustria Mail: w.allacher@energiepark.at

Mobil: +43 (0) 664/88430627 Fax: +43(0) 2162/6810029

INFORMAÇÃO GERAL SOBRE A INSTALAÇÃO

As instalações de produção de e valorização de biogás em "Bruck an der Leitha" foram implementadas e são operadas dentro de um projecto de investigação e desenvolvimento, "biogás virtual" (http://www.virituellesbiogas.at). Uma parte do biogás produzido é usado para gerar electricidade em duas cogerações. Outra parte é actualizada para produção de biometano através de um sistema de valorização por membrana. O biometano é injectado na rede nacional de gás natural.

INSTALAÇÃO DE PRODUÇÃO DE BIOGAS

DETALHES TÉCNICOS			
Início da operação	2004	Produção de biogás	650-800m³/h
Duração da fase de instalação	sem dados	Tempo de retenção hidraulico	60 d
Número de digestores	3 primários 2 secundários	Carga orgânica	2 kg oDM/m³d

Volume dos digestores $9\,000 + 10\,000\,\mathrm{m}^3$ Qualidade do biogás $60\text{-}65\,\mathrm{Vol.\,\%\,CH_4}$ Capacidade de $1\,000\,\mathrm{m}^3$ Consumo energético $sem\,dados$ armazenamento de gás

ABASTECIMENTO

Resíduos orgânicos 30 000 t/ano 100 %

(resíduos verdes, "camas" de aviário, resíduos alimentares e da indústria alimentar,

maltes de cerveja, resíduos oleosos, resíduos da produção de óleos vegetais)

(Imagem: Biogas Bruck/Leitha)

UTILIZAÇÃO DOS RESÍDUOS DA DIGESTÃO

Os resíduos de digestor são usados como fertilizantes nos campos agrícolas.

DETALHES ECONÓMICOS	
Investimento inicial	6.5 M€
Proveitos marginais relativamente à deposição de resíduos orgânicos	sem dados
Custo da produção de biogás	sem dados

INSTALAÇÃO DE VALORIZAÇÃO DE BIOGÁS

DETALHES TÉCNICOS				
Início da operação	2007	Disponibilidade instalação	da	sem dados
Sistema de valorização	Membrane	Utilização biometano	do	Injecção na rede de gás natural
Fabricante da instalação	Axiom Prozesstechnik	Tratamento efluente atmosfér	do ico	Fed to gas engines
Capacidade de valorização	180 Nm³/h	Perdas de metano		0 % (exhaust methane is used by
Fracção de metano	>= 98 %			gas engines)

DETALHES ECONÓMICOS		
Investimento inicial	sem dados	Custos de produção de <i>sem dados</i> biometano

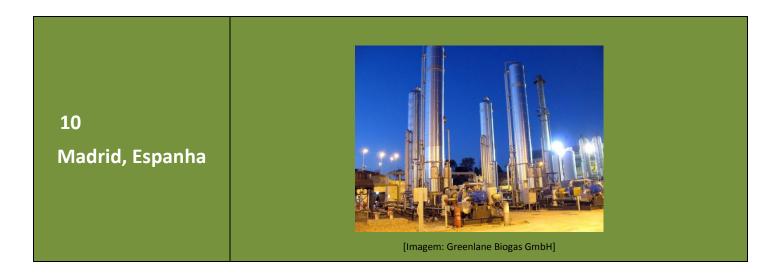
VANTAGENS E CONCLUSÕES

VANTAGENS PARA A REGIÃO

Cercas de 800 000 m³ de gás natural por ano puderam ser substituídos através de biometano na instalação de produção de biogás em "Bruck an der Leitha". A tecnologia de valorização através de membrana é uma tecnologia inovadora neste sector. Os resultados obtidos sugerem que essa tecnologia pode, especialmente em conexão com estações de enchimento de gás, tornar-se uma tecnologia com significativa aceitação se aperfeiçoada no futuro.

CONCLUSÕES

A instalação foi construída e é operada no quadro de um projecto de investigação e desenvolvimento. Durante o projecto, o processo de produção de biogás e a sua valorização foi continuamente melhorado, por exemplo, uma dessulfurização química oxidativa foi implementada para melhorar a dessulfuração.



(Imagem: Biogas Bruck an der Leitha GmbH)

LOCALIZAÇÃO OPERADOR

Valdemingómez, Madrid, Espanha UTE Biometanización La Paloma (Urbaser S.A. - Sufi S.A.)

INFORMAÇÃO GERAL SOBRE A INSTALAÇÃO

A instalação de produção de biogás em Valdemingómez é operada pela *UTE Biometanización La Paloma*. A Produção de biogás é baseada em resíduos domésticos orgânicos recolhidos em habitações particulares, em Madrid. A empresa "Greenlane Biogás" produz biometano através de um purificador de água. O biometano actualizado é comprimido e injectado no gasoduto. O biometano injectado é utilizado em combustível rodoviário de autocarros públicos.

INSTALAÇÃO DE PRODUÇÃO DE BIOGAS

DETALHES TÉCNICOS			
Início da operação	2008	Produção de biogás	4 000 Nm³/h
Duração da fase de instalação	2 anos	Tempo de retenção hidraulico	21 d
Número de digestores	4 prim., 5 sec.	Carga orgânica	sem dados
Volume dos digestores	sem dados	Qualidade do biogás	60 Vol. %
Capacidade de armazenamento de gás	2 200 m³	Consumo energético	0.19 kWh/Nm³ raw gas

ABASTECIMENTO

Total amount of waste 369 000 t/ano 100 %

(Resíduos domésticos)

(Imagem:Greenlane Biogas GmbH)

UTILIZAÇÃO DOS RESÍDUOS DA DIGESTÃO

Anualmente, cerca de 190 000 toneladas de composto são produzidos como resíduos de digestores.

DETALHES ECONÓMICOS	
Investimento inicial	79 M€
Proveitos marginais relativamente à deposição de resíduos orgânicos	sem dados
Custo da produção de biogás	sem dados

INSTALAÇÃO DE VALORIZAÇÃO DE BIOGÁS

DETALHES TÉCNICOS			
Início da operação	2008	Disponibilidade da instalação	98%
Sistema de valorização	Water scrubber	Utilização do biometano	Injecção na rede de gás natural
Fabricante da instalação	Greenlane Biogas GmbH	Tratamento do efluente atmosférico	Biofiltro
Capacidade de valorização	4 000 Nm³/h	Perdas de metano	0.9%
Fracção de metano	98%		

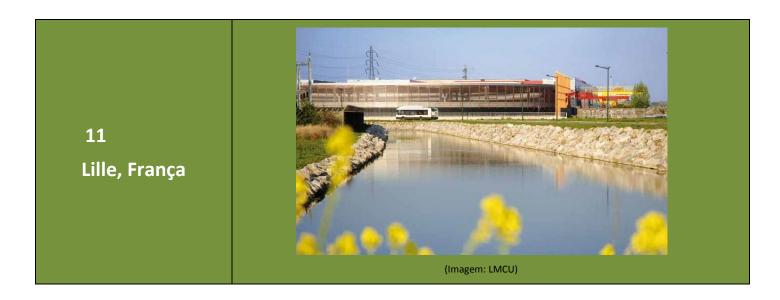
DETALHES ECONÓMICOS			
Investimento inicial	3.2 M€	Custos de produção de biometano	sem dados

VANTAGENS E CONCLUSÕES

VANTAGENS PARA A REGIÃO

A instalação de produção de biogás em Valdemingómez trata resíduos orgânicos recolhidos em habitações particulares em Madrid. Assim, cerca de 370 000 toneladas por ano são usadas para a produção de energia em vez de serem desperdiçadas. Correspondentemente, cerca de 300 000 toneladas de emissões de CO2 são evitadas por ano através da digestão anaeróbia de resíduos orgânicos. Aproximadamente 34 milhões m³ de biogás bruto podem ser produzidos através da utilização dos resíduos orgânicos recolhidos. O biogás actualizado (2 600 m³ / h) é usado em 250 autocarros da "Empresa Municipal de Transportes" (EMT) o que equivale a 20% da sua frota total.

CONCLUSÕES



sem informação disponível

LOCALIZAÇÃO OPERADOR

Lille Métropole Communauté Urbaine - LMCU

França http://www.lillemetropole.fr

INFORMAÇÃO GERAL SOBRE A INSTALAÇÃO

O Centro de Recuperação Orgânica (CRO) está localizado na área metropolitana de Lille e está em operação desde 2007. O lixo orgânico vem de coleccionadores seleccionados, a partir de centros de reciclagem localizados na área metropolitana e de catering institucional. O biogás, a partir da ORC e de uma estação de tratamento de águas residuais (ETAR), é valorizado para biometano de qualidade. Este é transportado para um centro de transporte público por autocarro localizado próximo do local do CRO ou injectada na rede de gás natural. Os depósitos dos autocarros são preenchidos com uma mistura de gás natural e biometano na estação de enchimento.

INSTALAÇÃO DE PRODUÇÃO DE BIOGAS

DETALHES TÉCNICOS			
Início da operação	2007	Produção de biogás	1 200 Nm³/h
Duração da fase de instalação	1 ano	Tempo de retenção hidraulico	sem dados
Número de digestores	3	Carga orgânica	sem dados
Volume dos digestores	sem dados	Qualidade do biogás	60 Vol. % CH ₄
Capacidade de armazenamento de gás	sem dados	Consumo energético	0.21 kWh/Nm³ raw gas

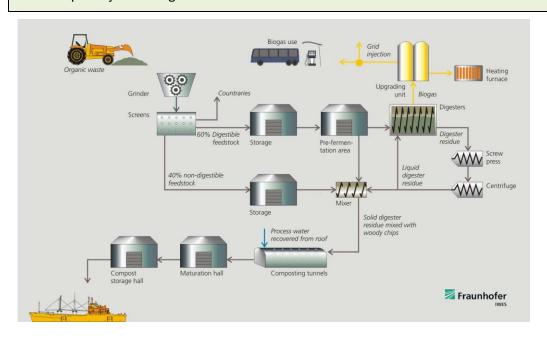
ABASTECIMENTO

Volume total de resíduos 108 000 t/a 100 %

(Resíduos orgânicos domésticos, resíduos verdes)

UTILIZAÇÃO DOS RESÍDUOS DA DIGESTÃO

O composto é produzido através da mistura feita pelo digestor de resíduos secos com lascas de madeira. O composto é usado como adubo orgânico em campos agrícolas.


DETALHES ECONÓMICOS

Investimento inicial sem dados

Proveitos marginais relativamente à deposição de sem dados

resíduos orgânicos

Custo da produção de biogás sem dados

INSTALAÇÃO DE VALORIZAÇÃO DE BIOGÁS

DETALHES TÉCNICOS

Início da operação	2006	Disponibilidade instalação	da	98%
Sistema de valorização	2006	Utilização biometano	do	Combustível rodoviário
Fabricante da instalação	Greenlane Biogas	Tratamento efluente atmosfér	do ico	sem dados
Capacidade de valorização	1 200 Nm³/h	Perdas de metano		1%
Fracção de metano	98 %			

		IÓMICOS
DETAIL	EC ECOL	

Investimento inicial	1.48 M€	Custos	de	produção	de	sem dados
		biometano				

VANTAGENS E CONCLUSÕES

VANTAGENS PARA A REGIÃO

A Comunidade Urbana de Lille foi pioneira na injecção de biometano na rede de gás natural em França. O uso de biometano produzido como combustível rodoviário contribui para uma melhor qualidade do ar e um menor impacto ambiental sobre a cidade de Lille, em comparação com o uso de combustíveis fósseis.

CONCLUSÕES

A Comunidade Urbana de Lille foi pioneira na injecção de biometano na rede de gás natural em França. A instalação de produção de biogás está em funcionamento desde 2006, mas a entrega de biometano para a estação de autocarros começou a encher em 2010. A principal razão, para o atraso da entrega de biometano, foi uma lacuna entre o projecto inovador e a legislação nacional relativamente à injecção na rede de gás natural e no transporte de gás através de gasodutos e da rede de gás natural.

(Imagens: http://www.biogasmax.eu)

