Urban Biogas Workshop "Biogas upgrading" - Biogas cleaning methods -

Michael Beil, Fraunhofer Institute for Wind Energy and Energy System Technology Urban Biogas Workshop, Riga/Latvia, 2012-10-25

Contents Biogas cleaning methods for:

- $\blacksquare H_2S$
- Other unwanted gas compounds:
 - Organic silicon compounds (siloxanes)
 - ■NH₃

Contents

Separation of water / drying

Desulphurization / Reduction of sulphur

Separation of other unwanted gas compounds:
 Organic silicon compounds (siloxanes)
 NH₃

Separation of water / drying: Cooling

- Mostly at the inlet of the upgrading plant
- Always after compressors to avoid unwanted condensation effects
- Including condensate separator
- Mostly not suitable to reach sufficient low dew points for grid injection

Separation of water / drying: Adsorption

- Mostly at the outlet of the upgrading plant (if using scrubbers)
- Suitable to reach sufficient low dew points for grid injection (- 60°C to – 90°C)
- Typical adsorbents: e.g. molecular sieves or silica gel
- Regeneration is needed (e.g. by a TSA Temperature Switch Adsorption system – one column is loaded, the other one is regenerated by heated gas)

Contents

Separation of water / drying

Desulphurization / Reduction of sulphur

Separation of other unwanted gas compounds:
 Organic silicon compounds (siloxanes)
 NH₃

Overview desulphurization methods

Method	H ₂ S - Output- concentration	Neces- sity of O ₂	Internal / Exter nal	Primary desulp h.	Precision desulp h.
Internal biological H ₂ S reduction (in the digester)	50 - 200 ppm	Yes	Internal	x	
External biological H ₂ S reduction (out of the digester in a sprinkling filter)	10 - 200 ppm	Yes	External	x	
Combination of external biological H₂S reduction with lye scrubber	20 - 100 ppm	(Yes)	External	х	
Chemical precipitation using iron salts (sulphide precipitation)	100 - 150 ppm	No	Internal	x	
Chemical precipitation using iron hydoxide	100 - 150 ppm	No	Internal	x	
Iron oxide or iron hydroxide (in an external column)	< 1 ppm	(Yes)	External		x
Adsorption / catalytic oxidation using impregnated activated carbon	< 1 ppm	Yes	External		X
Zinc oxide	< 1 ppm	No	External		Х

Green marked methods have currently most relevance for biogas upgrading!

Desulphurization: Internal biological desulph. (in the digester)

 $2 H_2 S + O_2 \rightarrow 2 S + 2 H_2 O$ $S + H_2 O + O_2 \rightarrow H_2 SO_3$

- Air dosing: 2 12 %
- Cheap
- Dilution of biogas with nitrogen

Desulphurization: Internal biological desulph. (in the digester)

Alternative:

Pure oxygen by oxygen generation at the plant. Provided by a small air separation system (PSA).

Desulphurization:

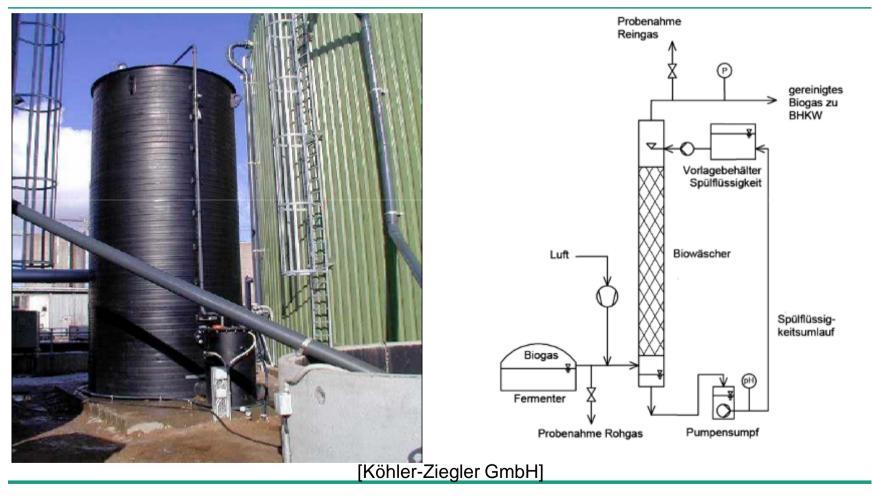
Internal biological desulph. (in the digester) Alternative:

Pure oxygen provided by an oxygen tank (from external production):

- Not common
- Relatively expensive

Desulphurization:

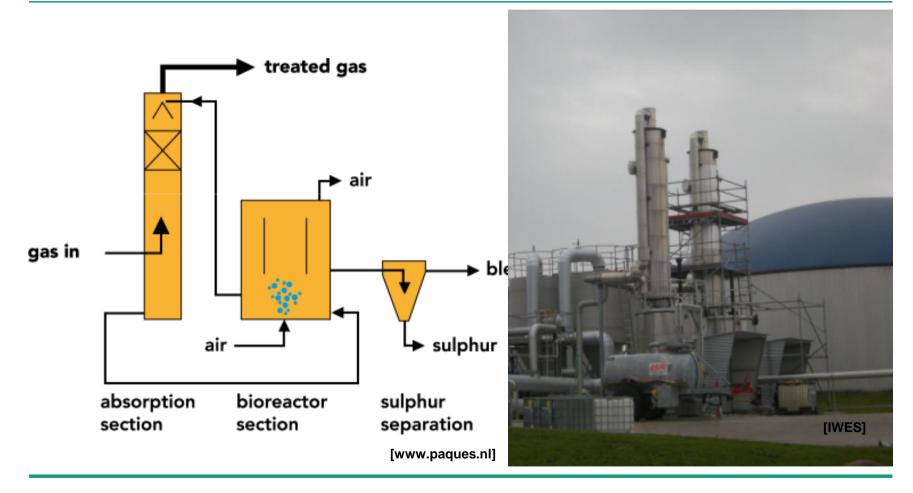
Internal biological desulph. (in the digester)


© Fraunhofer IWES

Desulphurization: Internal biological desulph. (in the digester)

Method	H₂S - Output- concentration	Neces- sity of O ₂	Internal / Exter nal	Primary desulp h.	Precision desulp h.
Internal biological H ₂ S reduction (in the digester)	50 - 200 ppm	Yes	Internal	Х	
External biological H ₂ S reduction (out of the digester in a sprinkling filter)	10 - 200 ppm	Yes	External	x	
Combination of external biological H ₂ S reduction with lye scrubber	20 - 100 ppm	(Yes)	External	х	
Chemical precipitation using iron salts (sulphide precipitation)	100 - 150 ppm	No	Internal	х	
Chemical precipitation using iron hydoxide	100 - 150 ppm	No	Internal	Х	
Iron oxide or iron hydroxide (in an external column)	< 1 ppm	(Yes)	External		x
Adsorption / catalytic oxidation using impregnated activated carbon	< 1 ppm	Yes	External		х
Zinc oxide	< 1 ppm	No	External		Х

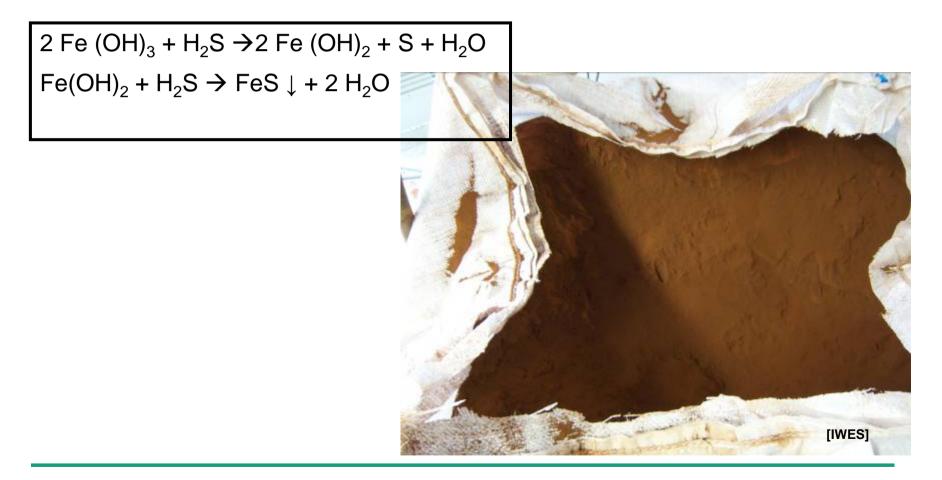
Desulphurization: External biological desulph. (out of the digester)



Desulphurization: Internal biological desulph. (in the digester)

Method	H ₂ S - Output- concentration	Neces- sity of O ₂	Internal / Exter nal	Primary desulp h.	Precision desulp h.
Internal biological H2S reduction (in the digester)	50 - 200 ppm	Yes	Internal	x	
External biological H2S reduction (out of the digester in a sprinkling filter)	10 - 200 ppm	Yes	External	х	
Combination of external biological H ₂ S reduction with lye scrubber	20 - 100 ppm	(Yes)	External	x	
Chemical precipitation using iron salts (sulphide precipitation)	100 - 150 ppm	No	Internal	x	
Chemical precipitation using iron hydoxide	100 - 150 ppm	No	Internal	x	
Iron oxide or iron hydroxide (in an external column)	< 1 ppm	(Yes)	External		x
Adsorption / catalytic oxidation using impregnated activated carbon	< 1 ppm	Yes	External		x
Zinc oxide	< 1 ppm	No	External		Х

Desulphurization: Combination of external biological H₂S reduction with a lye scrubber



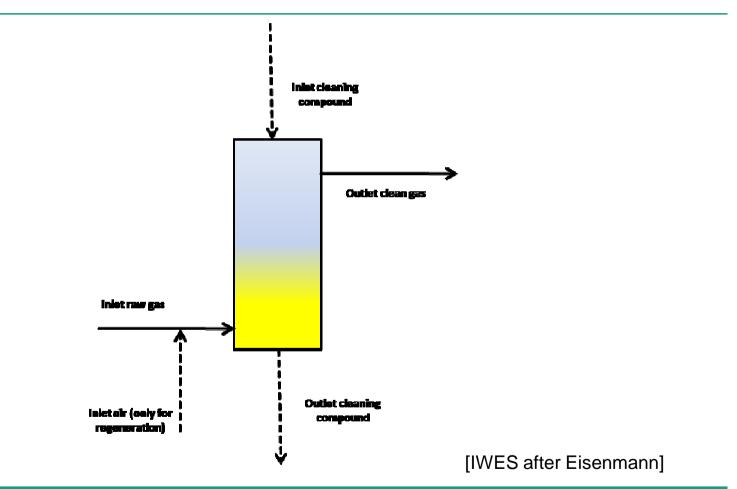
Desulphurization: Combination of external biological H₂S reduction with a lye scrubber

Method	H ₂ S - Output- concentration	Neces- sity of O ₂	Internal / Exter nal	Primary desulp h.	Precision desulp h.
Internal biological H2S reduction (in the digester)	50 - 200 ppm	Yes	Internal	х	
External biological H2S reduction (out of the digester in a sprinkling filter)	10 - 200 ppm	Yes	External	x	
Combination of external biological H ₂ S reduction with lye scrubber	20 - 100 ppm	(Yes)	External	х	
Chemical precipitation using iron salts (sulphide precipitation)	100 - 150 ppm	No	Internal	х	
Chemical precipitation using iron hydoxide	100 - 150 ppm	No	Internal	х	
Iron oxide or iron hydroxide (in an external column)	< 1 ppm	(Yes)	External		x
Adsorption / catalytic oxidation using impregnated activated carbon	< 1 ppm	Yes	External		х
Zinc oxide	< 1 ppm	No	External		Х

Desulphurization: Chemical precipitation (iron hydroxide)

Desulphurization: Chemical precipitation (iron chloride)

 $FeCl_2 + H_2S \rightarrow FeS \downarrow + 2 HCI$



Desulphurization: Internal biological desulph. (in the digester)

Method	H ₂ S - Output- concentration	Neces- sity of O ₂	Internal / Exter nal	Primary desulp h.	Precision desulp h.
Internal biological H2S reduction (in the digester)	50 - 200 ppm	Yes	Internal	x	
External biological H2S reduction (out of the digester in a sprinkling filter)	10 - 200 ppm	Yes	External	x	
Combination of external biological H ₂ S reduction with lye scrubber	20 - 100 ppm	(Yes)	External	x	
Chemical precipitation using iron salts (sulphide precipitation)	100 - 150 ppm	No	Internal	x	
Chemical precipitation using iron hydoxide	100 - 150 ppm	No	Internal	x	
Iron oxide or iron hydroxide (in an external column)	< 1 ppm	(Yes)	External		x
Adsorption / catalytic oxidation using impregnated activated carbon	< 1 ppm	Yes	External		x
Zinc oxide	< 1 ppm	No	External		х

Desulphurization: Iron oxide or hydroxide in an external column

Desulphurization: Iron oxide or hydroxide in an external column

Method	H ₂ S - Output- concentration	Neces- sity of O ₂	Internal / Exter nal	Primary desulp h.	Precision desulp h.
Internal biological H2S reduction (in the digester)	50 - 200 ppm	Yes	Internal	х	
External biological H2S reduction (out of the digester in a sprinkling filter)	10 - 200 ppm	Yes	External	X	
Combination of external biological H₂S reduction with lye scrubber	20 - 100 ppm	(Yes)	External	х	
Chemical precipitation using iron salts (sulphide precipitation)	100 - 150 ppm	No	Internal	х	
Chemical precipitation using iron hydoxide	100 - 150 ppm	No	Internal	х	
Iron oxide or iron hydroxide (in an external column)	< 1 ppm	(Yes)	External		х
Adsorption / catalytic oxidation using impregnated activated carbon	< 1 ppm	Yes	External		x
Zinc oxide	< 1 ppm	No	External		Х

Desulphurization: Adsorption / catalytic oxidation using impregnated activated carbon

Demand:

• Oxygen (compared to stoichiometric needed):

- > 2 x (impregnated)
 ~ 4 x (not impregnated)
- Humidity (rel.): 30 80 %
- Retentation time: 2 6 s

[IWES]

Desulphurization: Iron oxide or hydroxide in an external column

Method	H ₂ S - Output- concentration	Neces- sity of O ₂	Internal / Exter nal	Primary desulp h.	Precision desulp h.
Internal biological H2S reduction (in the digester)	50 - 200 ppm	Yes	Internal	x	
External biological H2S reduction (out of the digester in a sprinkling filter)	10 - 200 ppm	Yes	External	x	
Combination of external biological H₂S reduction with lye scrubber	20 - 100 ppm	(Yes)	External	x	
Chemical precipitation using iron salts (sulphide precipitation)	100 - 150 ppm	No	Internal	x	
Chemical precipitation using iron hydoxide	100 - 150 ppm	No	Internal	х	
Iron oxide or iron hydroxide (in an external column)	< 1 ppm	(Yes)	External		x
Adsorption / catalytic oxidation using impregnated activated carbon	< 1 ppm	Yes	External		х
Zinc oxide	< 1 ppm	No	External		х

Contents

Separation of water / drying

Desulphurization / Reduction of sulphur

Separation of other unwanted gas compounds:
 Organic silicon compounds (siloxanes)
 NH₃

Overview siloxanes:

Name	Abbrev.	Formula	M [g/mol]
Tetramethylsilane	TMS		
Trimethylsilanol	MOH		
Hexamethyldisiloxane	L2	C ₆ H ₁₈ OSi ₂	162
Octamethyltrisiloxane	L3	$C_8H_{24}O_2Si_3$	236
Decamethyltetrasiloxane	L4	$C_{10}H_{30}O_3Si_4$	310
Dodecamethylpentasiloxane	L5	C ₁₂ H ₃₆ O₄Si ₅	384
Tetradecamethylhexasiloxane	L6	C ₁₄ H ₄₂ O ₅ Si ₆	459
Hexadecamethylheptasiloxane	L7	C ₁₆ H ₄₈ O ₆ Si ₇	533
Octadecamethyloctasiloxane	L8	C ₁₈ H ₅₄ O ₇ Si ₈	607
Hexamethylcyclotrisiloxane	D3	C ₁₂ H ₁₈ O ₃ Si ₃	222
Octamethylcyclotetrasiloxane	D4	C ₈ H₂₄O₄Si₄	297
Decamethylcyclopentasiloxane	D5	C ₁₀ H ₃₀ O ₅ Si ₅	371
Dodecamethylcyclohexasiloxane	D6	C ₁₂ H ₃₆ O ₆ Si ₆	445
Tetradecamethylcycloheptasiloxane	D7	$C_{14}H_{42}O_7Si_7$	519
Hexadecamethylcyclooctasiloxane	D8	$C_{16}H_{48}O_8Si_8$	593

[IWES, 2010]

Siloxane separation:

Most common and suitable methods:

Cooling (cryogenic):

- -25°C → -26%
- -30°C → -27%
- -70°C → -99%

Adsorption (using activated carbon filters)

Combination of cooling and adsorption

Ammonia separation

- Activated carbon filters
- Scrubbers:
 - Water scrubber
 - Amine scrubber
 - Genosorb® scrubbers)
- Membranes

[Copyright: Schmack Biogas AG]

© Fraunhofer IWES

Contacts

Michael Beil Fraunhofer-Institute IWES Division Bioenergy System Technology Königstor 59 34119 Kassel/Germany +49/561/7294-421 michael.beil@iwes.fraunhofer.de

© Fraunhofer IWES