

Biomethane Calculator & Cooperative Biogas to Biomethane Developments

Workshop "Business Agreements for Urban Biogas Projects" - 14.05.2013

Sascha Flesch

Agenda

• Biomethane Calculator

• Cooperative Models for Biogas Upgrading

content courtesy of :

http://bio.methan.at/en/download_biomethane-calculator

BIOMETHANE CALCULATOR

Biomethane Calculator

- Calculation of investment, operating and overall annual costs for biogas upgrading technologies
- Most key technologies covered
- Includes pre-treatment technologies and feed-in issues
- Feasibility calculations, techno-economic assessment
- Cost parameters will be updated and refined frequently

Biomethane Calculator: Inputs

Plant size

Raw biogas composition

 Methane, carbon dioxide, oxygen, nitrogen, water, hydrogen sulfide, ammonia, other contaminants

Product gas quality requirements

- Local/regional gas grid quality
- Heating value, maximum contaminant concentration
- Offgas quality requirements
 - Offgas treatment needs
 - Emission limits

THANF REGIONS

Biomethane Calculator:

- Gas pretreatment technology / desulphurisation
- Gas upgrading technology
- Delivery gas pressure requirement, high-pressure compression
- Biomethane heating value requirements, propane dosing
- Biomethane odorisation

HANF REGION

Biomethane pipeline, feed-in and gas transfer station

Biomethane Calculator: Financial Parameters

- Capital costs:

- Interest rate on capital costs
- Expected plant life-time / long-term contracts
- Funding of investment costs

– Operating costs:

- Personnel
- Electricity
- Materials / chemicals / analytics & calibration gases

Maintenance costs

Life-time of equipment components / replacement

Biomethane Calculator

 <u>http://bio.methan.at/e</u> <u>n/download_biometha</u> <u>ne-calculator</u>

BiomethaneCalculator: Further Developments

- Integration of different offgas treatment systems
- Integration of additional language: POLISH
- Optionally integration of additional gas upgrading technology (depending on data provided by manufacturers)
- Integration of various biomethane utilisation scenarios (gas grid injection, locally used vehicle fuel)

Upgrading Plant Economics

Figure 1: Economy of scale: degression of overall specific costs of biomethane production depending on raw biogas capacity for different biogas upgrading technologies

2 options where analyzed

mobile biogas upgrading solutions

 raw biogas pipeline – centralized biogas upgrading

Mobile Biogas-Upgrading

Prerequisites & Conditions

• Raw biogas buffer storage at BG plant

• Mobile BG upgrading unit

• Mobile BM storage

• Refined logistics

HANF REGIONS

On-Site Buffer Storage Solutions

Figure 4: Low pressure gas storage systems: balloon type gas storage (upper row left); cushion type gas storage (upper row right); membrane roof gas storage on fermenter top (lower row left); external double membrane storage system (lower row right); Sources: Sattler AG and Panaqua AG

BIO-METHANE REGIONS

On-Site Buffer Storage Solution

Figure 5: Raw biogas storage systems for elevated pressure: gas storage tank (left); compression and expansion unit (right); Source: Panaqua AG

Mobile Upgrading Container

Figure 3: Scheme of a mobile biogas upgrading unit with a capacity of 300m³/h raw biogas using gaspermeation mounted in a 20-foot standard container; Source: Vienna University of Technology

Mobile Storage of BM

Figure 6: Pressurised gas tank transportation systems applying WAB system: design study of gas transportation truck with 150 cylinders of 80 litres volume for 220 bar (left); swap trailer system (mid); light lorry with swap trailer body (right); Source: Güssing Energy Technologies GmbH, Schoon Fahrzeugsysteme

Mobile Storage of BM

Figure 7: Pressurised gas transportation system – the Galileo system "virtual pipeline"; Source: Galileo SA

Economics of Concept: Assumptions

- Grid injection
- Transport required to injection point
- Transport pressure 220bar
- No BG production costs included
- €50/m³ biogas storage

Economics of Concept: Scenario

- total capacity of plants : 210m³/h
- gas permeation upgrading plant (300m³/h)
- max. 50km between plants
- €2.7/km
- average transportation time = 1h

	Cooperative biogas upgrading initiative			
	Plant A	Plant B	Plant C	Plant D
Raw biogas capacity [m³/h]	50	80	30	50
Raw biogas storage duration [h]	41	38	43	41
Raw biogas storage volume [m³]	2050	3040	1290	2050

LandesEnergieVerein

Economics of Concept: Schedule

Figure 8: Time schedule of biogas upgrading plant handling 4 small-scale AD-plants including raw biogas storage tank filling levels; Source: Vienna University of Technology Steiermark

erein

Economics of Concept: Results

	Cooperative upgrading	Decentralised upgrading	
Investment costs upgrading plant	1 mobile plant: 1.292.819 €	Sum of 4 plants: 2.076.574 €	
Investment costs raw biogas storage	Sum of 4 plants: 421.500 €	-	
Considered total investment costs	1.714.319€	2.076.574 €	
Annual costs of transportation	98.550 €/a		
Overall annual costs including capital	106 125 6/2	522.695 €/a	
costs, operation and transportation	490.155 t /d		
Specific production costs	43,7 €ct/m³ biomethane	59,2 €ct/m³ biomethane	

Centralized Biogas-Upgrading

Prerequisites & Conditions

- PE pipes
- 15cm inner diameter => 1000m³/h (STP)
- Low pressure system: 200mbar(g) 2bar(g)
- Costs: €120-€200/m

Figure 10: Biomethane pipeline in Bruck/Leitha, Austria during construction; pipe connection by welding (right); Source: Vienna University of Technology

Economics of Concept: Assumptions

- 8 BG-plants in grid (2xA,2xB,2xC,2xD)
- AD-plant capacity 420m³/h
- Upgrading plant: gas permeation (420m³/h)
- €130/m pipeline, 20km network
- Low pressure compression
- Rudimentary upgrading (drying, NH₃)

Economics of Concept: Results

	Cooperative upgrading	Decentralised upgrading	
Investment costs upgrading plant	1 plant: 1.062.390 €	Sum of 8 plants: 3.175.786 €	
Investment costs raw biogas pipeline	2.600.000€	-	
Investment costs raw biogas	252 581 £	-	
compression	552.561 C		
Investment costs rudimentary upgrading	257.501€	-	
Considered total investment costs	4.272.472€	3.175.786€	
Overall annual costs including capital	652 702 £/2	740.836 €/a	
costs and operation	033.7 <i>32</i> C/a		
Specific production costs	37,0 €ct/m³ biomethane	42,0 €ct/m³ biomethane	
Simple payback period	12,6 a		

www.bio-methaneregions.eu

INTELLIGENT ENERGY

EUROPE

Suggestions/ Comments/ Questions

